
....the world has changed....

Credis: J. Barta \& Boris Vallejo

manufacturing

yesterday

Approach:
Make good products cheaply and quickly

QCD approach

(Quality - Cost - Delivery)

today/tomorrow

The present market cake is not growing much larger, but variety is, due to diversity of customers' needs. Besides, customers request and expect shorter delivery schedules, higher quality, and high reliability. This dictates a "higher variety-small lots" style of production, featuring high quality, speedy delivery and assured safety/reliability.

PQCDS approach

 (diversified PRODUCTS, of high QUALITY, at low COST, with speedy DELIVERY and assured SAFETY/RELIABILITY)
manufacturing

yestierolay

Seller's Market

Costs associated with Waste could
be built into Product's price
today/tomorrow

Buyer's Market

Clients are no
longer prepared to subsidise
manufacturers’
costs associated with Waste

manufacturing

Factory Management determines Production Capacity
(Estimate-based Levelling)

Costs + Profit $=$ Selling Price
(Product-Out approach)

Customers determine Production Capacity

(Reality-based Levelling)

Selling Price - Profit $=$ Costs
(Market-In approach)

manufacturing

Profit is something that comes naturally out of the manufacturing and marketing process
 today/tomorrow

Profit is something

 that must be created and earned through hard workManufacturing Cycle Time
-> = Selling Cycle Time

manufacturing

Manufacturing

 is the businessof making products

Manufacturing
is a
SERVICE
INDUSTRY

why enterprises don't "perform"...

....the root causes of poor performance date
back to over 2 centuries ago.....
....we have gone into the 21st century, with enterprises designed in the 18th and 19th centuries to perform well in the 20th....

WORLD CLASS MANUFACTURING

WORLD CLASS APPROACH TO MARKET

WORLD CLASS PRODUCT DEVELOPMENT

WORLD CLASS OPERATIONS

VAM

VALUE ADDING MANAGEMENT

the VAM approach to the productive process

homework?

.oblu, yes !!!!

SEW
 SYSTEMATIC
 ELIMINATION OF WASTE

FIGHTING WASTE IN PRODUCTION

In many factories waste has proliferated to such an extent that waste is no longer in the factory, but rather the factory is IN the waste..

FIGHTING WASTE IN PRODUCTION

GLASSIFICATIONOFWASTE

${ }^{\circ}$ Walking Waste
${ }^{\circ}$ Mowing Waste
${ }^{\circ}$ Watching Waste ${ }^{\circ}$ Talking Waste
Searching Waste Idling Waste

相 ${ }^{\circ}$ QC Waste
${ }^{\circ}$ Defect Producing Waste
${ }^{\circ}$ Repairing Waste
${ }^{\circ}$ Re-working Waste
${ }^{\circ}$ Degrading Waste
${ }^{\circ}$ QC Equipment Waste

- Waste of Materials
${ }^{\circ}$ Waste of components
${ }^{\circ}$ Size Waste
${ }^{\circ}$ Properties Waste

MANAGEMENT
${ }^{\circ}$ Waste in meetings
${ }^{\circ}$ Waste in Supervision
${ }^{\circ}$ Waste in Control
${ }^{\circ}$ Waste in Bureaucracy
Waste in Paperwork

EQUIPMENT
${ }^{\circ}$ Capacity Waste
${ }^{\circ}$ Features Waste
${ }^{\circ}$ Utilization Waste
${ }^{\circ}$ Breakdowns Waste
${ }^{\circ}$ Reduced Speed Waste

- Air Processing Waste
of Iding Waste

METHODS
${ }^{\circ}$ Comeyance Waste
${ }^{\circ}$ Retention Waste
${ }^{\circ}$ Lot Production Waste

SAFETY

${ }^{\circ}$ Inadequate Prevention Waste
${ }^{\circ}$ Accidents Waste
${ }^{\circ}$ Loss of Time Waste

- Reporting Waste

SUMMARY OF THE MAIN TYPES OF WASTE

>Overproduction

>Stock
$>$ Un-needed processing steps
>Motion
Control
$>$ Defects
> Waiting/idling
>Transportation

WASTE - THE TABLE OF EXCUSES - OLD

1) That's the way we have always done it
2) I didn't know you were in a hurry for it
3) That's not in my department
4) No one told me to go ahead
5) I am waiting for an OK
6) That's his job - not mine
7) Wait till the boss comes back \& ask him
8) I forgot
9) I didn't think it was very important
10) I'm so busy I just can't get around to it
11) I thought I told you
12) I wasn't hired to do that

WASTE - THE TABLE OF EXCUSES - NEW

1) That's the way we have always done it
2) There is no better way, believe me....
3) This way we know it works....
4) Why change? We are already so busy....
5) We have tried in the past, and it didn't work...
6) Managers and consultants.... Only able to mess us up
7) You mean we are stupid the way we do it???
8) Impossible
9) We need stock: it's a good investment
10) Set-up time cannot be reduced further....
11) We must control quality or clients will complain
12) All machines eventually give problems

movie time

spot the waste!

Hellilivis

the productive process in manufacturing

the productive process in manufacturing

some definitions

PROCUREMENT LEAD-TIME

Interval of time elapsing between issue of order and goods' readiness for production

$$
\begin{aligned}
& \text { PROCESSING LEAD-TIME (or "THROUGHPUT TIME") } \\
& \text { Interval of time elapsing between moment of availability } \\
& \text { of input materials/components and moment of availability } \\
& \text { of 1st output product (quasi-product, sub-assembly....) } \\
& \text { [Mather. 1988] }
\end{aligned}
$$

the productive process in manufacturing

some definitions

P-TIME (PRODUCTION TIME or PHYSICAL LEAD-TIME)

Cumulated Lead-Time $=$ Procurement Lead-Time + Processing lead-Time

the productive process in manufacturing

some definitions

the productive process in manufacturing

some definitions

D-TIME (DELIVERY TIME)
Interval of time between client's placement of order and client's desired/expected order shipment

the productive process in manufacturing

some definitions

CUSTOMER LEAD-TIME

Interval of time between customer's placement of an order and customer's receipt of goods ordered

the productive process in manufacturing

some definitions

the CUSTOMER LEAD-TIME

is a REAL Lead-Time, generally not short enough to meet the customers' delivery deadlines....
"...customers are very picky people. They tend to want all of a sudden products that they did never even bother to look at before. And when they want them, they want them now. Customers have long ago embruced the JIT concept....."

the productive process in manufacturing

some definitions

"catalogue" manufacturing

TRADITIONAL SOLUTION: THE FP STORE

the productive process in manufacturing

some definitions

"catalogue" manufacturing

this is a shorter Customer Lead-Time, but is a DUMMY LEAD-TIME the FP Store is supposed to make up for the disadvantage of having a Manufacturing Lead-Time, and becomes a "thick wall" between factory and customer - the thicker the FP Store wall, the less able the factory to respond quickly to market changes
a strong, health factor is one that can meet needs for prompt delivery based on REAL Lead-Time

the productive process in manufacturing

some definitions

"order" manufacturing

TRADITIONAL SOLUTION

Accommodate a new Customer Order to fit into actual Production Plan or decline new Order.

If new Order can be "squeezed in", often this may only be done at the expenses of delaying Orders-on-hand through a Production Plan reschedule.

the productive process in manufacturing

some definitions

CYCLE TIME

Referred to a repetitive operation: the overall time required to carry out a repetitive processing activity (including load/unload, inspect, walk....)

MANUFACTURING CYCLE TIME
Sum of all Cycle-Times necessary to carry out all operations required to manufacture a product

the productive process in manufacturing

some definitions

SELLING CYCLE-TIME ("PITCH TIME" - "TAKT TIME") Referred to a production lot: minutes and seconds that "should take" to process parts, quasi-products or finished products according to amount and D-Time specified in Customer's order
Takt Time $=$ total daily operating time total daily requirement
the TAKT TIME is a parameter related to
Customer's Demand Rate, and gives an indication of "how long" operations
should take

the productive process in manufacturing

some definitions

TAKT TIME - EXAMPLE

PRODUCT: Brake Cylinder

PRODUCT CODE: BC 0183

MONTH PRODUCTION SCHEDULE

22 Working days
2 Shifts of 8 Hours each

Theoretical working time per shift Breaks \& precautionary resting time Effective working time per shift Effective working time per day Effective working time per day

```
(h:min)8:00
```

(h:min) 0:20
(h:min) 7:40
(h:min) 15:20
(sec) 55.200
REQUIREMENT

Monthly requirement
Daily requirement
(pieces/month) 18.000
(pieces/day)818

	EFFECTIVE WORKING TIME PER DAY	55.200 (seconds/day)	
TAKT TIME			= 67 (seconds/piece)
	DAILY REQUIREMENT	818 (pieces/day)	

movie time

spot the waste! Manufacturing Industry - 2

FACTS AND FIGURES

Current sales: 500.000 packs/year - slight peak in summer
Current production (only from March to October): 18.000 packs/day (8 hours)
Current TAKT: $6.336 .000 / 500.000=12,6$ seconds
Current speed of production: $28.800 / 18.000=1,6$ seconds/pack
Production Speed: 7,8 times faster than TAKT

LEAN MANUFACTURING
 Power Point Presentation by Carlo Scodanibbio

Copyright: © Carlo Scodanibbio 2008/09 - All rights reserved
A simple copyright statement: you are authorised to install this presentation in one computer station only. You are authorised to print this entire presentation and copy it for exclusive use by employees of your Organisation.
You are not authorised to distribute this presentation - by electronic or other means and supports - outside your Organisation.

http://www.scodanibbio.com

END OF PREVIEW

To download, free, the complete presentation please go to
http://www.scodanibbio.com/site/present.html

